
Sauteed Onions
Transparent Associations from Domain Names to Onion Addresses

Rasmus Dahlberg
rasmus.dahlberg@kau.se

Karlstad University
Karlstad, Sweden

Paul Syverson
paul.syverson@nrl.navy.mil

U.S. Naval Research Laboratory
Washington D.C., USA

Linus Nordberg
linus@verkligendata.se
Verkligen Data AB
Stockholm, Sweden

Matthew Finkel
sysrqb@torproject.org

Independent
Grand Junction CO, USA

ABSTRACT
Onion addresses offer valuable features such as lookup and routing
security, self-authenticated connections, and censorship resistance.
Therefore, many websites are also available as onionsites in Tor.
The way registered domains and onion addresses are associated
is however a weak link. We introduce sauteed onions, transparent
associations from domain names to onion addresses. Our approach
relies on TLS certificates to establish onion associations. It is much
like today’s onion location which relies on Certificate Authorities
(CAs) due to its HTTPS requirement, but has the added benefit of
becoming public for everyone to see in Certificate Transparency
(CT) logs. We propose and prototype two uses of sauteed onions:
certificate-based onion location and search engines that use CT
logs as the underlying database. The achieved goals are consistency
of available onion associations, which mitigates attacks where users
are partitioned depending on which onion addresses they are given,
forward censorship-resistance after a TLS site has been configured
once, and improved third-party discovery of onion associations, which
requires less trust while easily scaling to all onionsites that opt-in.

CCS CONCEPTS
• Security and privacy → Browser security; Web protocol se-
curity; • Networks → Naming and addressing; • Social and
professional topics→ Technology and censorship.

KEYWORDS
Onion Services, Web PKI, TLS Certificates, Certificate Transparency

ACM Reference Format:
Rasmus Dahlberg, Paul Syverson, Linus Nordberg, and Matthew Finkel.
2022. Sauteed Onions: Transparent Associations from Domain Names to
Onion Addresses. In Proceedings of the 21st Workshop on Privacy in the
Electronic Society (WPES ’22), November 7, 2022, Los Angeles, CA, USA. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3559613.3563208

This work is licensed under a Creative Commons Attribution-
ShareAlike International 4.0 License.

WPES ’22, November 7, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9873-2/22/11.
https://doi.org/10.1145/3559613.3563208

1 INTRODUCTION
Onion addresses are domain nameswithmany useful properties. For
example, an onion address is self-authenticated due to encoding its
own public key. It also makes integral use of the anonymity network
Tor to provide secure and private lookups as well as routing [12]. A
major usability concern is that onion addresses are random-looking
strings; they are difficult to discover, update, and remember [49].
Existing solutions approach these limitations in different ways, e.g.,
ranging from setting onion addresses in HTTP headers over HTTPS
with so-called onion location [36] and bookmarking found results
to making use of manually curated third-party lists [29, 37, 47] as
well as search engines like DuckDuckGo or ahmia.fi [34, 49].

Herein we refer to the unidirectional association from a domain
name to an onion address as an onion association. The overall goal is
to facilitate transparent discovery of onion associations. To achieve
this we rely on the observation that today’s onion location can be
implemented in certificates issued by Certificate Authorities (CAs).
This is not an additional dependency because onion location already
requires HTTPS [36]. The main benefit of transitioning from HTTP
headers to TLS certificates is that all such onion associations become
signed and sequenced in tamper-evident Certificate Transparency
(CT) logs [21, 23], further tightening the relation between CAs and
onion keys [5, 6, 45] as well as public CT logging and Tor [10, 29].

Our first contribution is to make onion associations identical
for all Tor users, and otherwise the possibility of inconsistencies
becomes public via CT. Consistency of available onion associations
mitigates the threat of users being partitioned without anyone notic-
ing into subsets according to which onion address they received
during onion association. Our second contribution is to construct a
search engine that allows Tor users to look up onion associations
without having to trust the service provider completely. Other than
being helpful to validate onion addresses as authentic [49], such
discovery can continue to work after a TLS site becomes censored.

Section 2 briefly covers CT preliminaries. Section 3 describes
sauteed onions, an approach that makes discovery of onion asso-
ciations more transparent and censorship-resistant compared to
today. Section 4 discusses related work. Section 5 concludes the
paper. Appendix A contains query examples for our search engine.
Appendix B outlines an example setup. All artifacts are online [2].

https://doi.org/10.1145/3559613.3563208
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3559613.3563208

WPES ’22, November 7, 2022, Los Angeles, CA, USA Rasmus Dahlberg, Paul Syverson, Linus Nordberg, & Matthew Finkel

2 CERTIFICATE LOGGING PRELIMINARIES
CT is a system of public append-only logs that store TLS certificates
issued by trusted CAs [21, 23]. If web browsers add the criterion
that a certificate must be logged before accepting it as valid, cer-
tificate issuance practices by CAs effectively become transparent
so that mistakes and malfeasance can be detected by anyone that
observes the logs. These observers are called monitors because they
download every certificate from all logs. One can self-host a moni-
tor, or use a third-party service like crt.sh, or follow other models
based on subscriptions [8, 24]. To avoid introducing more parties
that are trusted blindly as in the CA ecosystem, CT stands on a
cryptographic foundation that permits efficient verification of in-
clusion (a certificate is in the log) and the append-only property (no
certificate has been removed or modified) [13]. A party engaging
in verification of these (logarithmic) proofs is called an auditor.

In practice, CT has been rolled-out gradually to not break the
web [42]. One facilitating factor has been the introduction of Signed
Certificate Timestamps (SCTs). An SCT is a log’s promise to include
a certificate within a certain amount of time; typically 24 hours.
This guarantees low-latency certificate issuance so that CAs can
embed SCTs in certificates to keep web servers oblivious to CT.
Google Chrome and Apple’s Safari require SCTs before accepting a
certificate as valid, and steps towards further SCT verification have
been taken recently [41]. Tor Browser does not require CT yet [10].

3 SAUTÉ ONIONS UNTIL DISCOVERY IS
TRANSPARENT AND CONFECTION IS FIRM

3.1 System Goals
Let an onion association be unidirectional from a traditional domain
name to an onion address. Three main system goals are as follows:

Privacy-Preserving Onion Associations Users should dis-
cover the same onion associations, and otherwise the possi-
bility of an inconsistency must become public knowledge.

Forward Censorship Resistance Unavailability of a TLS site
must not impede discovery of past onion associations.

Automated Verifiable Discovery Onion association search
should be possible without requiring blind trust in third-
parties. It must be hard to fabricate non-empty answers, and
easy to automate the setup for scalability and robustness.

For comparison, today’s onion location [36] does not assure a
user that the same HTTP header is set for them as for everyone
else. Classes of users that connect to a domain at different times or
via different links can be given targeted redirects to distinct onion
addresses without detection [44]. Onion location also does not work
if a regular site becomes unavailable due to censorship. The search
engine approach is further a frequent ask by Tor users [49]. The
solutions that exist in practice rely on manually curated lists [29, 37,
47], notably with little or no retroactive accountability. As specified
above, we aim for a similar utility but with a setup that can be
automated for all onion associations andwithout the ability to easily
fabricate non-empty answers without trivial detection. We sketch
out how these security properties are achieved in Section 3.3.4.

3.2 Threat Model and Scope
We consider an attacker that wants to trick a user into visiting
a targeted onionsite without anyone noticing the possibility of

such behavior. Users are assumed to know the right traditional
domain name that is easy to remember (such as torproject.org),
but not its corresponding onion address. We further assume that the
attacker either controls a trusted CA sufficiently to issue certificates
or is able to deceive them sufficiently during certificate issuance to
obtain a valid certificate from that CA. Any misbehavior is however
assumed to be detectable in CT. So, the certificate ecosystem is
treated as a building block that we make no attempt to improve.

We permit the attacker to make TLS sites unavailable after setup,
but we assume it is difficult to censor the CT log ecosystem because
it can be mirrored by anyone. Also, as part of the internet authen-
tication infrastructure, adversaries may have equities conflicts in
blocking CT logs, and if concerned at all about appearance would
have a harder time justifying such a block versus, e.g., a political,
journalism, or social media site. Similar to CT, we do not attempt to
solve certificate revocation and especially not in relation to certifi-
cates that are connected to discovery of onion associations. This is
consistent with Tor Browser’s existing model for revocation with
onion location, which similarly depends on the certificate for the
redirecting domain. There is no formal counterpart to revoke a
result in a search engine, but we outline future work related to this.

Our threat model includes countries that block direct access to
HTTPS sites [26]. This is arguably a capable attacker, as no country
is currently known to completely block indirect access via the Tor
network (though in some places Tor bridges and/or obfuscated
transport is needed). Our threat model also considers the plethora
of blindly trusted parties that help users discover onion addresses
with little or no retroactive accountability [1, 29, 37, 47]. In other
words, it is in-scope to pave the path towards more accountability.

3.3 Description of Sauteed Onions
An observation that inspired work on sauteed onions is that onion
location requires HTTPS [36]. This means that discovery of onion
associations already relies on the CA ecosystem. By incorporating
the use of CT, it is possible to add accountability to CAs and other
parties that help with onion address discovery while also raising the
bar for censoring sites and reducing anonymity. The name sauteed
onions is a cooking pun; the association of an onion address with a
domain name becomes transparent for everyone to see in CT logs.

For background, a CA-issued certificate can contain both a tra-
ditional domain name and a .onion address [5, 6]. This can be
viewed as a mutual association because the issuing CA must ver-
ify the traditional domain name and the specified onion address.
An immediate problem is that this would be ambiguous if there
are multiple domain names; which one (if any) should be associ-
ated with an onion address with such certificate coalescence? A
more appropriate path forward would therefore be to define an
X.509v3 extension for sauteed onions which clearly declares that a
domain-validated name wants to be associated with an onion address.

We describe two uses of sauteed onions that achieve our goals;
first assuming it is easy to get CA-issued certificates that con-
tain associated onion addresses for domain-validated names, and
then a short-term roll-out approach that could make it a reality
now. A sauteed onion is simply a CT-logged certificate that claims
example.com wants to be associated with <addr>.onion but not
necessarily the other way around, i.e., a unidirectional association.

Sauteed Onions WPES ’22, November 7, 2022, Los Angeles, CA, USA

3.3.1 Onion Location. Figure 1 illustrates onion location that uses
certificates. A user establishes a TLS connection to a site as usual.
Upon encountering a certificate that is CT-loggedwith an associated
onion address for the visited site example.com, an onion-location
prompt becomes available in Tor Browser or the onion site is visited
automatically. This is the same type of redirect behavior as today’s
onion location [36], except that the possibility of such a redirect is
disclosed in public CT logs. Attempts at targeted redirects would
thus be visible to site owners and independent third-parties. A
redirect to someone else’s onion address would also be visible to
the respective site owners. Notably the ability to detect inappro-
priate redirects acts as a deterrence while also being the first step
towards remediation, e.g., if users bookmarked onion addresses [49]
to achieve trust on first use or to avoid visiting a regular site and
an onionsite in a way that might reduce a user’s anonymity set.

Tor
Browser

Website

Onion
site

example.com
public key: ...
onion addr: ...

certificate and embedded SCTs

TLS handshake

redirect

Figure 1: Onion location based on a CT-logged certificate.

A key observation is that onion location has always been a fea-
ture facilitated by TLS. By implementing it in certificates rather than
HTTP headers that are delivered via HTTPS connections, TLS appli-
cations that are “not web” can use it too without rolling their own
mechanisms. The addition of requiring CT to follow onion-location
redirects is also an improvement compared to today, although one
that could be achieved with an HTTP-based approach as well (or
more ambitiously, for all Tor Browser certificate validations [10]).

We prototyped the above in a web extension that is free and open
source [2]. The criterion for CT logging is at least one embedded
SCT from a log in the policy used by Google Chrome [18]. If an
onion-location redirect is followed, the path of the current webpage
is preserved, similar to a typical configuration of today’s HTTP-
based onion location header that instead lists a complete URL [36].

3.3.2 Search Engine. A significant challenge for third-parties that
help users discover TLS sites that are available as onion services is
to gain confidence in the underlying dataset at scale. For example,
SecureDrop onion names are scoped to news sites [47]; the list by
Muffett is scoped as “no sites for tech with less than (arbitrary)
10,000 users” [29]; and ahmia.fi does not even attempt to give
onion addresses human-meaningful names [34]. To make matters
worse, solutions based on manually curated lists and third-party
search are currently implemented with little or no accountability.

Figure 2 shows what our approach brings to the table. All CT logs
can be monitored by a third-party to discover sauteed onions. A
search API can then be presented to users for the resulting dataset,
similar to existing monitoring services but scoped specifically for
discovery of onion associations. The utility of such a search API is:
“what onion addresses are available for www.example.com”.

The expected behavior of the search API is that an answer can
not be fabricated without controlling a CA or hijacking certificate

Tor
Browser

Onion
search

CT
logs

example.com
public key: ...
onion addr: ...

certificates and CT log info

example.com?

example.com
public key: ...
onion addr: ... discover

onion
sites

Figure 2: Verifiable domain name to onion address search.

issuance, and any CA malfeasance should further be caught by
CT. This means that no party can fabricate inappropriate answers
without detection. This is a major improvement compared to the
alternative of no verifiability at all, although one that in and of
itself does not prevent false negatives. In other words, available
answers could trivially be omitted. This is a limitation with the
authenticated data structure in CT that can be fixed; see security
sketch in Section 3.3.4 for an intuition of how to work around it.

We specified an HTTP REST API that facilitates search using a
domain name; the API also makes available additional information
like the actual certificate and its exact index in a CT log. In total
there are two endpoints: search (list of matches with identifiers to
more info) and get (more info). The complete API specification is
available online together with our implementation, which is free
and open source [2]. An independent implementation from Tor’s
hack week is also available by Rhatto [38]. Our prototype runs
against all CT logs in Google Chrome for certificates logged after
July 16, 02022. A few query examples are available in Appendix A.

3.3.3 Certificate Format. Until now we assumed that a sauteed
onion is easily set up, e.g., using an X.509v3 extension. The bad news
is that such an extension does not exist, and it would likely be a long
journey to standardize and see deployment by CAs. Therefore, our
prototypes rely on a backwards-compatible approach that encodes
onion addresses as subdomains [43]. To declare that example.com
wants to be associated with <addr>.onion, one can request a
domain-validated certificate that contains both example.com and
<addr>onion.example.com [45]. The inclusion of example.com
ensures that such a setup does not result in a dangerous label [17].
The hack to encode an onion address as a subdomain makes it part
of the certificate without requiring changes to CAs. Appendix B
details the necessary setup-steps further. The gist is the addition of
a subdomain DNS record and using the -d option in certbot [15].

Although the subdomain approach is easy to deploy right now,
it is by no means a perfect solution. An X.509v3 extension would
not require the configuration of an additional DNS record. In other
words, the unidirectional sauteed onions property works just as
well if the subdomain is not domain-validated. The important part
is that the CA validates example.com, and that the associated onion
address can be declared somewhere in the issued certificate without
an ambiguous intent. Another imperfection that goes hand-in-hand
with backwards-compatibility is that CAs would have to opt-out
from sauteed onions, unlike site owners that instead have to opt-in.

To avoid recommending a pattern that is discouraged by CAs, the
Tor Project should at least have a dialog with Let’s Encrypt which
issues the most certificates [3]. Somewhat similar subdomain hacks
related to CAs exist, but then with explicit negotiations [46]. Sub-
domain hacks without a relation to CAs and TLS were discouraged

WPES ’22, November 7, 2022, Los Angeles, CA, USA Rasmus Dahlberg, Paul Syverson, Linus Nordberg, & Matthew Finkel

in the past [22]. We argue that sauteed onions is related because
CA-validated names are at the heart of our approach. For example,
this is unlike Mozilla’s binary transparency idea that just wanted
to reuse a public log [28]. Sauteed onions also do not result in more
issued certificates; it is just the number of domain-validated names
that increase by one for TLS sites that do the setup.

3.3.4 Security sketch. Our threat model disallows the attacker
to tamper with CT and to make the log ecosystem unavailable.
Onion location as described in Section 3.3.1 therefore ensures that
a redirect becomes public, achieving detectability as defined in our
privacy-preserving onion association goal. The search engine in
Section 3.3.2 trivially achieves the same goal because onion associa-
tions are found via CT. Blocking a TLS site is additionally too late if
an association is already in a CT log, thus achieving forward censor-
ship resistance. Our search engine approach further makes it hard
to forge non-answers without detection because it requires control
of a CA and defeating the tamper-evidence of CT logs. While it is
possible to omit available answers, this can be mitigated by having
multiple search APIs, domains that check the integrity of their own
onion associations similar to the proposed verification pattern in
CONIKS [25], or to represent the sauteed onion dataset as a sparse
Merkle tree to get a verifiable log-backed map that additionally
supports efficient non-membership proofs that CT lacks [9, 14].

3.4 Future Work
It would be valuable to implement proofs of no omissions as well as
native lookups in a web extension or Tor Browser to verify every-
thing before showing the user a result (certificates, proofs of logging,
etc). The entire or selected parts of the sauteed onion dataset may
further be delivered to Tor Browser similar to SecureDrop onion
names [47]. The difference would be that the list is automated us-
ing a selection criteria from CT logs rather than doing it manually
on a case-by-case basis. A major benefit is that the sauteed onion
dataset can then be queried locally, completely avoiding third-party
queries and visits to the regular site. Another approach to explore
is potential integration of the sauteed onion dataset into Tor’s DHT:
a cryptographic source of truth for available onion associations is
likely a helpful starting point so that there is something to distribute.
It would also be interesting to consider other search-engine policies
than show everything as in our work, e.g., only first association or
last association. (These policies can be verified with full audits [14].)

4 RELATEDWORK
The CA/B forum accepts certificates with .onion addresses [5, 6].
DigiCert supports extended validation of .onion addresses [11],
and HARICA domain validation [19]. Muffett proposed same-origin
onion certificates that permit clients to omit verification of the
CA trust chain for onionsites [30]. Sauteed onions help Tor users
discover domain names with associated onion addresses. Therefore,
it is a complement to approaches that bring HTTPS to onionsites.

Syverson suggested that traditional domain names and .onion
addresses can be glued into a single registered domain [43]. Nusenu
proposed long-term Tor relay identifiers based on domain names to
retrieve lists of relevant public keys via HTTPS [35]. Sauteed onions
may be used for such associations with the benefit of transparency,

and it is further a lighter version of Syverson and Traudt’s self-
authenticated traditional addresses which favors early deployment
over properties like bidirectional onion associations, guaranteed
timeliness of revocation, and addressing all known threats [44, 45].

Winter et al. studied how users engage with onion services [49].
A gist is that Tor users have a hard time discovering onion addresses
and verifying them as authentic. Common discovery mechanisms
that are associated with human-meaningful identifiers include per-
sonal communication, webpage links, onion-location redirects [36],
third-party lists [37], and search engines like DuckDuckGo. Prior
work has also focused on enumerating onion addresses without
any associated identity, e.g., through CT-logged certificates with
.onion addresses [29] and crawling [1, 34]. Sauteed onions enhance
onion location by making the claimed associations transparent in
CT, and facilitate third-party solutions with less blind trust and
without assumptions about TLS sites not becoming blocked in the
future.

Several ideas were proposed that mitigate or bypass the problem
of random-looking onion addresses. Some sites generate vanity
addresses that, e.g., start with a prefix and have other memorable
traits [27]. Fink sketched out how to map onion addresses to a set of
words [16]. Kadianakis et al. defined a common API to hook into al-
ternative naming systems that give onion addresses pet names [20].
SecureDrop Onion Names is one such example that is, however,
implemented directly in Tor Browser as an HTTPS Everywhere
ruleset for selected news sites. Other alternative naming systems
include Namecoin [31] and OnioNS [48]. Sauteed onions is also an
alternative naming system, but one that relies on CAs and CT logs.
It may be possible to construct sauteed onions via DNSSEC, but
then relying on the DNS hierarchy without transparency logging.
Scaife et al. [40] proposed the .o TLD as an onionsite with DNSSEC.

Nordberg connected transparency logs and the consensus mech-
anism that Tor uses [32]. Dahlberg et al. proposed CT in Tor for all
certificate validations [10]. We only check signatures of embedded
SCTs in relation to onion location, and our search engine is a simple
application of CT monitoring. There is a large body of orthogonal
work that improve CAs and CT. For example, multi-path domain-
validation makes it harder to hijack onion associations [4], and
deployment of gossip would harden our CT log assumptions [7, 33].

5 CONCLUSION
Sauteed onions declare unidirectional associations from domain
names to onion addresses. These onion associations are established
in CA-issued and CT-logged TLS certificates, thereby making them
public for everyone to see. We propose two immediate applications:
certificate-based onion location and more automated verifiable
search. Both applications are opt-in for domain owners, and rely on
similar assumptions as today’s onion location. The added benefit
is more transparency, which facilitates a higher degree of consis-
tency between found onion associations as well as more censorship-
resistance for TLS sites after setup. Configuration of sauteed onions
requires one more DNS record and a domain-validated certificate
from any CA (such as Let’s Encrypt). In the future, the additional
DNS record may be replaced by an X.509v3 extension. We leave it
as a fun exercise to find the onion address of a TLS site that is in-
tentionally being censored by us: blocked.sauteed-onions.org.

Sauteed Onions WPES ’22, November 7, 2022, Los Angeles, CA, USA

ACKNOWLEDGMENTS
We would like to thank Kushal Das, Daniel Kahn Gillmor, Silvio
Rhatto, and Tobias Pulls for helpful discussions and comments.
Rasmus Dahlberg was supported by the Swedish Foundation for
Strategic Research. Paul Syverson was supported by ONR.

REFERENCES
[1] Ahmia. Indexing and crawling. https://ahmia.fi/documentation/indexing/.
[2] Artifact. https://gitlab.torproject.org/tpo/onion-services/sauteed-onions, 02022.
[3] J. Aas, R. Barnes, B. Case, Z. Durumeric, P. Eckersley, A. Flores-López, J.A. Halder-

man, J. Hoffman-Andrews, J. Kasten, E. Rescorla, S.D. Schoen, B. Warren. Let’s
Encrypt: An automated certificate authority to encrypt the entire web. Proc. ACM
CCS, 02019.

[4] H. Birge-Lee, L. Wang, D. McCarney, R. Shoemaker, J. Rexford, P. Mittal. Experi-
ences deploying multi-vantage-point domain validation at Let’s Encrypt. Proc.
USENIX Sec., 02021.

[5] CA/Browser Forum. Ballot 144 – validation rules for .onion names. https://
cabforum.org/2015/02/18/ballot-144-validation-rules-dot-onion-names/, 02015.

[6] CA/Browser Forum. Ballot sc27v3: Version 3 onion certificates. https://
cabforum.org/2020/02/20/ballot-sc27v3-version-3-onion-certificates/, 02020.

[7] L. Chuat, P. Szalachowski, A. Perrig, B. Laurie, E. Messeri. Efficient gossip
protocols for verifying the consistency of certificate logs. Proc. IEEE CNS, 02015.

[8] R. Dahlberg T. Pulls. Verifiable light-weight monitoring for Certificate Trans-
parency logs. Proc. NordSec, 02018.

[9] R. Dahlberg, T. Pulls, R. Peeters. Efficient sparse Merkle trees - caching strategies
and secure (non-)membership proofs. Proc. NordSec, 02016.

[10] R. Dahlberg, T. Pulls, T. Ritter, P. Syverson. Privacy-preserving & incrementally-
deployable support for Certificate Transparency in Tor. PoPETs 2021(2), 02021.

[11] DigiCert Inc. Ordering a .onion certificate from DigiCert. https://
www.digicert.com/blog/ordering-a-onion-certificate-from-digicert.

[12] R. Dingledine, N. Mathewson, P. Syverson. Tor: The Second-Generation Onion
Router. Proc. USENIX Sec., 02004.

[13] B. Dowling, F. Günther, U. Herath, D. Stebila. Secure logging schemes and
certificate transparency. Proc. ESORICS, 02016.

[14] A. Eijdenberg, B. Laurie, A. Cutter. Verifiable data structures. https:
//github.com/google/trillian/blob/111e9369ab032e493a2f19f9be6d16c4f78ccca5/
docs/papers/VerifiableDataStructures.pdf, 02018.

[15] EFF. Changing a certificate’s domain. https://eff-certbot.readthedocs.io/en/
stable/using.html#changing-a-certificate-s-domains.

[16] A. Fink. Mnemonic .onion URLs. https://gitweb.torproject.org/torspec.git/tree/
proposals/194-mnemonic-urls.txt, 02012.

[17] D.K. Gillmor. Dangerous Labels in DNS and E-mail. Internet-Draft draft-dkg-
intarea-dangerous-labels-01, IETF, 02022.

[18] Google Inc. Known logs. https://github.com/google/certificate-transparency-
community-site/blob/master/docs/google/known-logs.md, 02022.

[19] Harica. DV certificates for onion websites. https://news.harica.gr/article/
onion_announcement/, 02021.

[20] G. Kadianakis, Y. Angel, D. Goulet. A name system API for Tor Onion
Services. https://gitweb.torproject.org/torspec.git/tree/proposals/279-naming-
layer-api.txt, 02016.

[21] B. Laurie. Certificate Transparency. Commun. ACM, 57(10):40–46, 02014.
[22] B. Laurie. Re: [Trans] Mozilla’s basic take on binary transparency. https://

mailarchive.ietf .org/arch/msg/trans/1FxzTkn4LVxU6KN2P3YfbVsKpho/, 02017.
[23] B. Laurie, A. Langley, E. Kasper. Certificate Transparency. https://tools.ietf .org/

html/rfc6962, 02013.
[24] B. Li, J. Lin, F. Li, Q. Wang, Qi Li, J. Jing, C. Wang. Certificate Transparency in

the wild: Exploring the reliability of monitors. Proc. ACM CCS, 02019.
[25] M.S. Melara, A. Blankstein, J. Bonneau, E.W. Felten, M.J. Freedman. CONIKS:

Bringing key transparency to end users. USENIX Sec., 02015.
[26] S. Migliano S. Woodhams. Websites blocked in Russia since Ukraine invasion.

https://www.top10vpn.com/research/websites-blocked-in-russia/, 02022.
[27] mkp224o—vanity address generator for ed25519 onion services. https://

github.com/cathugger/mkp224o, 02022.
[28] Mozilla. Security/binary transparency. https://wiki.mozilla.org/Security/

Binary_Transparency, 02017.
[29] A. Muffet. Real-world onion sites. https://github.com/alecmuffett/real-world-

onion-sites, 02022.
[30] A. Muffett. Same origin onion certificates. https://crt.sh/?id=6819596552, 02020.
[31] Namecoin. https://www.namecoin.org/.
[32] L. Nordberg. Tor consensus transparency. https://gitweb.torproject.org/

torspec.git/tree/proposals/267-tor-consensus-transparency.txt, 02014.
[33] L. Nordberg, D.K. Gillmor, T. Ritter. Gossiping in CT. Internet-draft draft-ietf-

trans-gossip-05, IETF, 02018.
[34] J. Nurmi. Understanding the Usage of Anonymous Onion Services. PhD thesis,

Tampere University, Tampere, Finland, 02019.

[35] nusenu. HAROI: Human readable authenticated relay operator identifier. https:
//lists.torproject.org/pipermail/tor-dev/2021-December/014688.html, 02021.

[36] Tor Project. Onion-location. https://community.torproject.org/onion-services/
advanced/onion-location/.

[37] Tor Project. Onion services. https://community.torproject.org/onion-services/.
[38] Silvio Rhatto. Sauteed week API backend. https://gitlab.torproject.org/rhatto/

sauteed-week/-/blob/main/docs/api.md, 02022.
[39] Sauteed onion certificate. https://crt.sh/?id=5957691193, 02022.
[40] N. Scaife, H. Carter, P. Traynor. OnionDNS: A seizure-resistant top-level domain.

Proc. IEEE CNS, 02015.
[41] E. Stark, J. DeBlasio, D. O’Brien, D. Balzarotti, W. Enck, S. King, A. Stavrou.

Certificate transparency in google chrome: Past, present, and future. IEEE Secur.
Priv., 19(6):112–118, 02021.

[42] E. Stark, R. Sleevi, R. Muminovic, D. O’Brien, E. Messeri, A. Porter Felt, B. McMil-
lion, P. Tabriz. Does certificate transparency break the web? measuring adoption
and error rate. Proc. IEEE Security and Privacy, 02019.

[43] P. Syverson. The once and future onion. Proc. ESORICS, 02017.
[44] P. Syverson, M. Finkel, S. Eskandarian, D. Boneh. Attacks on onion discovery

and remedies via self-authenticating traditional addresses. ACM WPES, 02021.
[45] P. Syverson M. Traudt. Self-authenticating traditional domain names. Proc. IEEE

SecDev, 02019.
[46] F. Valsorda. How Plex is doing HTTPS for all its users. https://words.filippo.io/

how-plex-is-doing-https-for-all-its-users/, 02015.
[47] SecureDrop. Getting an onion name for your SecureDrop. https://securedrop.org/

faq/getting-onion-name-your-securedrop/.
[48] J. Victors, M. Li, X. Fu. The onion name system. PoPETs, 02017(1), 02017.
[49] P. Winter, A. Edmundson, L.M. Roberts, A. Dutkowska-Zuk, M. Chetty, N. Feam-

ster. How do Tor users interact with onion services? Proc.USENIX Sec., 02018.

A ONION ASSOCIATION SEARCH EXAMPLES
We host the search engine described in Section 3.3.2 on a Debian
VM with 1GB RAM, 20GB SSD, and a single vCPU. It is available at
api.sauteed-onions.org aswell as zpadxxmoi42k45iifrzuktwq
ktihf5didbaec3xo4dhvlw2hj54doiqd.onion. Please note that we
operate this prototype on a best-effort level until December, 02022.

An example for the search endpoint is provided in Figure 3,
followed by extracting additional certificate information using the
get endpoint in Figure 4. There are many CT-logged certificates
for the same onion association because certificates are renewed
periodically and typically submitted to multiple CT logs.

B CONFIGURATION EXAMPLE
We used certbot to set up sauteed onions using Let’s Encrypt and
apache on a Debian system. The difference when compared to the
usual certbot instructions is that the -d flag must be specified to
enumerate all SANs as a comma-separated list [15]. The domain
name with an associated onion address as a subdomain also needs
to be reachable via DNS for Let’s Encrypt to perform domain vali-
dation. Therefore, an appropriate A/AAAA or CNAME record is re-
quired. A sanity-check for www.sauteed-onions.org would be to
verify that dig qvrbktnwsztjnbga6yyjbwzsdjw7u5a6vsyzv6hk
j75clog4pdvy4cydonion.www.sauteed-onions.org returns the
same IP address as dig www.sauteed-onions.org before running
certbot –apache -d www.sauteed-onions.org,qvrbktnwszt
jnbga6yyjbwzsdjw7u5a6vsyzv6hkj75clog4pdvy4cydonion.www
.sauteed-onions.org. See crt.sh for an example certificate [39].

https://ahmia.fi/documentation/indexing/
https://gitlab.torproject.org/tpo/onion-services/sauteed-onions
https://cabforum.org/2015/02/18/ballot-144-validation-rules-dot-onion-names/
https://cabforum.org/2015/02/18/ballot-144-validation-rules-dot-onion-names/
https://cabforum.org/2020/02/20/ballot-sc27v3-version-3-onion-certificates/
https://cabforum.org/2020/02/20/ballot-sc27v3-version-3-onion-certificates/
https://www.digicert.com/blog/ordering-a-onion-certificate-from-digicert
https://www.digicert.com/blog/ordering-a-onion-certificate-from-digicert
https://github.com/google/trillian/blob/111e9369ab032e493a2f19f9be6d16c4f78ccca5/docs/papers/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/111e9369ab032e493a2f19f9be6d16c4f78ccca5/docs/papers/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/111e9369ab032e493a2f19f9be6d16c4f78ccca5/docs/papers/VerifiableDataStructures.pdf
https://eff-certbot.readthedocs.io/en/stable/using.html#changing-a-certificate-s-domains
https://eff-certbot.readthedocs.io/en/stable/using.html#changing-a-certificate-s-domains
https://gitweb.torproject.org/torspec.git/tree/proposals/194-mnemonic-urls.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/194-mnemonic-urls.txt
https://github.com/google/certificate-transparency-community-site/blob/master/docs/google/known-logs.md
https://github.com/google/certificate-transparency-community-site/blob/master/docs/google/known-logs.md
https://news.harica.gr/article/onion_announcement/
https://news.harica.gr/article/onion_announcement/
https://gitweb.torproject.org/torspec.git/tree/proposals/279-naming-layer-api.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/279-naming-layer-api.txt
https://mailarchive.ietf.org/arch/msg/trans/1FxzTkn4LVxU6KN2P3YfbVsKpho/
https://mailarchive.ietf.org/arch/msg/trans/1FxzTkn4LVxU6KN2P3YfbVsKpho/
https://tools.ietf.org/html/rfc6962
https://tools.ietf.org/html/rfc6962
https://www.top10vpn.com/research/websites-blocked-in-russia/
https://github.com/cathugger/mkp224o
https://github.com/cathugger/mkp224o
https://wiki.mozilla.org/Security/Binary_Transparency
https://wiki.mozilla.org/Security/Binary_Transparency
https://github.com/alecmuffett/real-world-onion-sites
https://github.com/alecmuffett/real-world-onion-sites
https://crt.sh/?id=6819596552
https://www.namecoin.org/
https://gitweb.torproject.org/torspec.git/tree/proposals/267-tor-consensus-transparency.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/267-tor-consensus-transparency.txt
https://lists.torproject.org/pipermail/tor-dev/2021-December/014688.html
https://lists.torproject.org/pipermail/tor-dev/2021-December/014688.html
https://community.torproject.org/onion-services/advanced/onion-location/
https://community.torproject.org/onion-services/advanced/onion-location/
https://community.torproject.org/onion-services/
https://gitlab.torproject.org/rhatto/sauteed-week/-/blob/main/docs/api.md
https://gitlab.torproject.org/rhatto/sauteed-week/-/blob/main/docs/api.md
https://crt.sh/?id=5957691193
https://words.filippo.io/how-plex-is-doing-https-for-all-its-users/
https://words.filippo.io/how-plex-is-doing-https-for-all-its-users/
https://securedrop.org/faq/getting-onion-name-your-securedrop/
https://securedrop.org/faq/getting-onion-name-your-securedrop/

WPES ’22, November 7, 2022, Los Angeles, CA, USA Rasmus Dahlberg, Paul Syverson, Linus Nordberg, & Matthew Finkel

$ c u r l −s h t t p s : / / a p i . s au teed −on ions . org / s e a r ch ? in =www. sau teed −on ions . org | j son_pp
[

{
" i d e n t i f i e r s " : [

" 2 " ,
" 3 " ,
" 2 4 " ,
" 2 5 " ,
" 2 8 " ,
" 2 9 " ,
" 3 7 "

] ,
" on ion_addr " : " qv rbk tnwsz t jnbga6yy jbwzsd jw7u5a6vsyzv6hk j 75c l og4pdvy4cyd . onion " ,
" domain_name " : "www. sau teed −on ions . org "

}
]

Figure 3: Find onion associations for www.sauteed-onions.org.

$ c u r l −s h t t p s : / / a p i . s au teed −on ions . org / g e t ? i d =2 | j son_pp
{

" on ion_addr " : " qv rbk tnwsz t jnbga6yy jbwzsd jw7u5a6vsyzv6hk j 75c l og4pdvy4cyd . onion " ,
" domain_name " : "www. sau teed −on ions . org " ,
" l o g _ i d " : "b1N2rDHwMRnYmQCkURX/ dxUcEdkCwQApBo2yCJo32RM=" ,
" l o g_ i ndex " : 5 82362461 ,
" c e r t _ p a t h " : " db / l o g s /Mammoth / 5 8 2 3 6 2 4 6 1 . pem "

}
$ c u r l −L h t t p s : / / a p i . s au teed −on ions . org / db / l o g s /Mammoth / 5 8 2 3 6 2 4 6 1 . pem | \

o p en s s l x509 − t e x t −noout
. . .

Figure 4: Get further information relating to the certificate with identifier “2”.

	Abstract
	1 Introduction
	2 Certificate Logging Preliminaries
	3 Sauté onions until discovery is transparent and confection is firm
	3.1 System Goals
	3.2 Threat Model and Scope
	3.3 Description of Sauteed Onions
	3.4 Future Work

	4 Related Work
	5 Conclusion
	References
	A Onion Association Search Examples
	B Configuration Example

